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ABSTRACT

The paper considers the problem of distributed estimation of

an unknown deterministic scalar parameter (the target signal)

in wireless sensor networks (WSNs), in which each sensor

receives a single snapshot of the field. The observation or

sensing mode is only partially known at the corresponding n-

odes, perhaps, due to their limited sensing capabilities or oth-

er unpredictable physical factors. Specifically, it is assumed

that the observation process at a node switches stochastically

between two modes, with mode one corresponding to the

desired signal plus noise observation mode (a valid obser-

vation), and mode two corresponding to pure noise with no

signal information (an invalid observation). With no prior

information on the local sensing modes (valid or invalid),

the paper introduces a learning-based distributed estimation

procedure, the mixed detection-estimation (MDE) algorithm,

based on closed-loop interactions between the iterative dis-

tributed mode learning and estimation. The online learning

(or sensing mode detection) step re-assesses the validity of the

local observations at each iteration, thus refining the ongoing

estimation update process. The convergence of the MDE al-

gorithm is established analytically. Simulation studies show

that, in the high signal-to-noise ratio (SNR) regime, the MDE

estimation error converges to that of an ideal (centralized)

estimator with perfect information about the node sensing

modes. This is in contrast with the estimation performance of

a naive average consensus based distributed estimator (with

no mode learning), whose estimation error blows up with an

increasing SNR.

Index Terms— Distributed estimation, distributed learn-

ing, adaptive, stochastic switching, sensor networks.

1. INTRODUCTION

A key issue in WSNs concerns the attainment of meaningful

network-wide consensus of intelligence based on unreliable

locally sensed data [1, 2, 3]. Due to the limited sensing capa-
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09-1-0107 and DoD-DTRA under Grant HDTRA1-08-1-0010.

bility and other unpredictable physical factors, these individ-

ual observations are usually imperfect. In particular, we as-

sume that the observation process at a node switches stochas-

tically between two modes, i.e., a valid observation mode and

an invalid observation mode. This stochastic property of the

observation modes causes the unreliable performance of tra-

ditional distributed consensus algorithms, e.g., the variance of

a naive averaging estimate [4] increases in proportion to the

square of SNR.

An MDE algorithm is introduced in this paper, which

is a learning-based distributed estimation procedure based

on closed-loop interactions between the iterative distribut-

ed mode learning and estimation. The main contribution of

this MDE algorithm is that the mode learning part detects

the validity of the local observation simultaneously when

performing the distributed estimation task. In each round of

iteration, each node locally detects the observation validity

with the maximum a priori probability (MAP) criterion based

on the knowledge of the local current estimate of the target to-

gether with the local observation. And then the local estimate

is refined with the detected validities of the local observations

and other exchanged information from their neighbors. By

alternatively detecting validity and estimating the target, the

sensor network can achieve a global consensus among all

nodes. We analytically establish the convergence of the MDE

algorithm. With simulations, we show that in the high SNR

regime, the MDE estimation error converges to that of an ide-

al estimator with perfect information about the node sensing

modes. The adaptive learning property of the MDE algorithm

achieves a reliable estimation performance, in contrast to the

estimation performance of a naive average consensus based

algorithm in the high SNR regime.

2. NETWORK MODEL

Let Ni and Ωi denote sensor node i and the set of its neigh-

bors respectively. The received signal at Ni is ri = aix+wi,

i ∈ {1, 2, ..., N}, where ai = {0, 1} is an unknown validity

index of the observation at node Ni, i.e., ai = 1 indicates that

ri is a valid observation of the signal + noise form, whereas
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ai = 0 corresponds to the case of pure noise. Also, the wi’s

are independent Gaussian white noises with zero mean and

variance σ2. Although the exact instantiations of the ai’s are

unknown, we assume that the ai’s are i.i.d. Bernoulli random

variables and the probability p1 � Pr{ai = 1} is known apri-
ori. We denote the mean and the variance of ai as ā and σa,

respectively, i.e., ā = p1 and σa = p1(1− p1). We are inter-

ested in estimating x using an iterative distributed procedure,

in which each node Ni may only use its neighbors’ current

state information for updating its estimate (state) at time slot

t.
Denoting by r the network observation vector, i.e.,

r = ax+ w, (1)

with r = [r1, r2, ..., rN ]T , a = [a1, a2, ..., aN ]T , and w =
[w1, w2, ..., wN ]T , we note that, a rather straight-forward ap-

proach based on naive averaging could be cast as,

x̂NNaive =
1T r
Nā

, (2)

which yields an unbiased estimate with the property that

x̂NNaive → x as N → ∞. The variance (which coincides with

the mean-squared error) of x̂NNaive may be expressed as

var(x̂NNaive) =
1

N
[
σ2

ā2
(1 + SNRσ2

a)]. (3)

Although this naive estimate is quite straight-forward in terms

of implementation, we observe from (3) that the precision is

poor in the high SNR regime, where in particular, the mean-

squared error (MSE) blows up with the SNR. Other than being

inaccurate, since the SNR is unknown apriori, the estimate

x̂NNaive is highly unreliable and, in fact, contradicts with the

common intuition that a higher SNR leads to a better perfor-

mance.

On the other extreme, if we assume that a is perfectly

known, we may generate an ideal estimate x̂NIdeal of x by e-

liminating the invalid observations, i.e.,

x̂NIdeal =

∑
{i:ai=1} ri∑
{i:ai=1} ai

=

∑N
i=1 airi∑N
i=1 ai

, (4)

for which a robust version for distributed implementation of

x̂NIdeal was studied recently in [5]. The above estimate is also

unbiased, and x̂NIdeal → x as N → ∞, and its variance may

be expressed as

var(x̂NIdeal) = E(var(x̂NIdeal|a)) + var(E(x̂NIdeal|a)) (5)

= ψσ2, (6)

where ψ =
∑N

k=0
1
k

(
N
k

)
pk1p

N−k
0 . When p1 = 0.5, we have

ψ ≈ 2−2−N

N+1 . A key difference from the naive estimate in

(2) is that the variance of the ideal estimate stays constant

over SNR, i.e., the estimation error does not scale up with the

SNR.

From the MSE viewpoint, the ideal estimate is in fact op-

timal as long as the observation noise is Gaussian. However,

such a scheme may not be implementable as it requires per-

fect knowledge of a, which is unknown apriori. In Section

3, we will introduce a learning-based distributed estimation

procedure, the MDE algorithm, based on the simultaneous it-

erative detection of a and the estimate refinement of x. Our

results will indicate that not only a may be detected with high

accuracy by the MDE algorithm, but also the estimation per-

formance (in terms of MSE) approaches that of the ideal esti-

mate x̂NIdeal in the high SNR regime (see Section 4).

3. DISTRIBUTED ALGORITHM

In this section, we present the MDE algorithm for the problem

of interest. The first subsection introduces the MDE algorith-

m, and the second one analyzes its convergence.

3.1. MDE Algorithm

In each iteration of the MDE algorithm, each node first locally

detects the value of ai by using its current local estimate of x
and its local observation. The new observation validity index

is subsequently forwarded to the neighboring nodes, leading

to an estimate refinement process. The algorithm is presented

as follows.

Step 1. Initialization

r̃i =
ri
ā
, x̂i(1) =

N∑
j=1

Wij r̃j . (7)

Step 2. Detection of ai

x̂2i (t)− 2rix̂i(t)
âi(t)=0

≷
âi(t)=1

2σ2 ln
p1
p0
. (8)

Step 3. Estimation of x

yi(t) = (1− β(t))
∑N

j=1
Wijyj(t− 1)

+α(t)
∑N

j=1
Wijrj âj(t), (9)

vi(t) = (1− β(t))
∑N

j=1
Wijvj(t− 1)

+α(t)
∑N

j=1
Wij âj(t), (10)

x̂i(t) =
yi(t)

vi(t)
, (11)

where yi(0) = riai(0), vi(0) = ai(0), α(t) = 1/t, and

β(t) = 1/t1−ε, with ε ∈ (0, 1). In the above, the Wij’s

denote the Metropolis weights [6] given by

Wij =

⎧⎨
⎩

1/(1 +max{|Ωi|, |Ωj |}) j ∈ Ωi

1−∑
k∈Ωi

Wik i = j
0 otherwise

, (12)

where | · | denotes the cardinality of a set.

Step 4. Repeat steps 2 and 3 until |x̂i(t)− x̂i(t− 1)| < ε,
where ε is a predefined small positive error tolerant parameter.
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In practice, each node needs to know the degrees of their

neighbors across the network topology in order to calculate

the local weights Wij’s. Intuitively, in step 2, each node lo-

cally detects (re-assesses) the value of ai using the current lo-

cal estimate of x and ri. The validity indices, thus obtained,

are forwarded to the neighboring nodes, leading to the state

update in step 3, in which each node refines its local vari-

ables, i.e., yi(t) and vi(t) based on its neighbors’ information

variables. Finally, a new estimate is obtained from yi(t) and

vi(t). The next subsection investigates the convergence of

this iterative procedure.

3.2. Convergence of the MDE Algorithm
The main convergence result concerning the MDE algorithm

is stated as follows.

Theorem 1 Let the inter-sensor communication network be
connected1, and assume that α(t) and β(t) in (9)-(10) satisfy
the following three conditions:

• α(t) → 0, β(t) → 0,

• β(t)/α(t) → ∞,

• ∑∞
t=0 α(t) = ∞,

∑∞
t=0 β(t) = ∞.

Then, the estimate sequence {x̂i(t)} at each node Ni con-
verges almost surely (a.s.), and the limiting value is given by

lim
t→∞ x̂i(t) =

∑N
i=1 âiri∑N
i=1 âi

, ∀i, (13)

with âi ∈ {0, 1}N denoting the limiting value of the conver-
gent sequence {âi(t)}. In particular, the local sensor esti-
mates reach consensus. Note that âi is, in general, random
given the stochasticity of ai.

We emphasize that the conditions on α(t) and β(t) listed

above are not hard to satisfy. For example, α(t) = 1/t and

β(t) = 1/t1−ε, ε ∈ (0, 1) satisfy desired conditions.

The proof of Theorem 1 is omitted here due to space lim-

itation and will appear in the journal version of this paper. In

the following, we provide an intuitive sketch of the proof by

stating the various intermediate propositions leading to Theo-

rem 1.

The first result, Lemma 3.1, shows that as long as the se-

quences {α(t)} and {β(t)} satisfy the conditions in Theo-

rem 1, the processes yi(t) and vi(t) at each node Ni converge.

More importantly, the corresponding limiting values are same

for all the nodes, which leads to global consensus.

Lemma 3.1 Let the conditions in Theorem 1 hold. Then, the
sequences {yi(t)} and {vi(t)} reach the global consensus as
t → ∞, i.e., for each i, yi(t) and vi(t) converge a.s. to y∗

and v∗, the limiting values independent of i.

1The network is said to be connected if there exists a path (possibly multi-

hop) between any pair of nodes.
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Fig. 2. The performance comparison of the MDE algorithm,

the naive averaging algorithm and the ideal estimate.

The limiting consensus values y∗ and v∗ in Lemma 3.1

may be characterized as follows:

Lemma 3.2 Under the conditions in Theorem 1, the limiting
consensus values y∗ and v∗ are given by y∗ =

∑N
i=1 âiri
N and

v∗ =
∑N

i=1 âi

N , respectively, where âi is the limiting value of
the convergent sequence {ai(t)}.

Sketched proof of Theorem 1 By the convergence of yi(t)
and vi(t) established in Lemma 3.1 and Lemma 3.2, the con-

vergence of x̂i(t) follows naturally, and the limiting value

may be calculated as

lim
t→∞ x̂i(t) =

limt→∞ yi(t)

limt→∞ vi(t)
=
y∗

v∗
=

∑N
i=1 âiri∑N
i=1 âi

. (14)

4. SIMULATION RESULTS
In the last section, the a.s. convergence of the MDE algorithm

has been established analytically, where the limiting value is

shown to be a function of {âi}. Given the stochasticity of ai,
the analytical quantification of the MDE performance is not

trivial, which is left for the journal version of this paper. In

order to show the characterization of the limiting value, we

here present simulation studies implemented in Matlab that
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demonstrate the estimation performance of the MDE algorith-

m. In our network setting, 50 nodes are uniformly distributed

over a unit square where two nodes are connected by an edge

if their distance is less than 0.3, a predefined transmission

range. In this section, the ai’s are independently generated

with p1 = 0.5, wi’s are independent white Gaussian noises

with zero mean and unit variance, and the other parameter

values are specified in the description of each figure.

In Fig. 1, we demonstrate the convergence (see Theo-

rem 1) of the proposed algorithm. A realization of the local

estimates at the 50 nodes for 100 rounds of iterations, i.e.,

x̂i(t), i ∈ [1..50], t ∈ [1..100] is plotted. The signal value x
is 100 in this simulation, i.e., SNR = 20. In the figure, about

half of the nodes start around the initial value 100 and the

rest start around 0 indicating that the former ones correspond

to valid observations and the latter ones are the nodes with

invalid observations. We observe that the local estimates of

both types of nodes converge to the same limiting value after

about 50 rounds of iteration and this consensus is close to the

real target value 100 as desired.

In Fig. 2, we compare the performance of the proposed

algorithm with the naive averaging algorithm and the ideal

algorithm (see Section 2). In the figure, the estimation error

of these three estimates are plotted (both numerically and an-

alytically) with SNR ranging from -15 dB to 20 dB, i.e., x
from 0.03 to 100. For each SNR, we generated 500 realiza-

tions of the MDE algorithm, the limiting consensus value of

the local estimates for each realization being taken to be the

estimate in the first node at the end of the 3000-th iteration

round. The estimation error plotted in the figure is the aver-

age (numerical) squared deviation of the limiting consensus

value from the true value x over these 500 realizations, i.e.,

(
∑

(x̂1(3000) − x)2)/500. The topology of the communi-

cation graph (given by the random node placement) and the

observation values at each nodes are independently generat-

ed for each realization. We make several observations from

this figure. First, the numerical result of the naive averag-

ing algorithm matches the theoretical results, and the estima-

tion error grows exponentially with SNR (now in dB) as de-

rived in (3); second, the numerical result of the ideal algorith-

m matches the theoretical results and the estimation error of

the ideal algorithm is the lowest among the three algorithm-

s; and third, although the estimation error of MDE is high-

er than that of the naive averaging in the lower SNR regime

(SNR<4), it performs much better in the mid and high SNR

regimes (SNR>10), where it approaches the performance of

the optimal estimator.

In the following we provide some intuitive explanation of

the observed simulation behavior: 1). In the low SNR regime,

the target value is relatively small as compared with the Gaus-

sian noise, which leads to a high detection error in (8) of Sub-

section 3.1. Some invalid observations are wrongly detected

as valid ones and wrongly incorporated into the estimate up-

date process, whereas, some valid observations are discarded

as invalid ones. Thus, the estimate is largely distorted from

the ideal estimate, which leads to the poor estimation perfor-

mance; 2). In the high SNR regime, the detection error in (8)

is very small and almost every observation is correctly detect-

ed as valid or invalid. Therefore, the MDE estimate is quite

close to the ideal estimate and the MSE of the MDE algorithm

approaches this (ideal algorithm) lower bound;

5. CONCLUSIONS AND FUTURE WORK
We studied algorithms for distributed estimation of a scalar

target signal with observations of imperfect mode informa-

tion in sensor networks. The MDE algorithm was presented,

in which an online learning step re-assesses the validity of the

local observations at each iteration, and thus refining the on-

going estimation update process. We analytically established

the convergence of the MDE algorithm. From the results of

the simulation, we have shown that in the high SNR regime,

the MDE estimation error converges to that of an ideal esti-

mator with perfect information about the node sensing modes.

Ongoing research concerns an analytical characterization of

the MDE performance. Observing that the estimation error of

MDE is higher than that of the naive average consensus in the

low SNR regime, an auto-switching mechanism between the

naive estimator and the MDE estimator will be developed in

the future work.
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